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NERSC and Systems Overview
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NERSC is the Mission HPC Computing Center for 
the DOE Office of Science
● NERSC deploys advanced HPC and data systems for the 

broad Office of Science community
● NERSC staff provide advanced application and system 

performance expertise to users
● Approximately 7,000 users and 800 projects
● Over 2,000 publications cite using NERSC resources per 

year
● Founded in 1974, focused on open science
● Division of Lawrence Berkeley National Laboratory
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NERSC Systems Roadmap

NERSC-7: Edison
Multi-core CPU

NERSC-8: Cori 
Manycore CPU
NESAP Launched: 
transition applications to 
advanced architectures

2013 2016 2024

 

NERSC-9: Perlmutter
CPU and GPU nodes 
Continued transition of 
applications and support for 
complex workflows

2020

NERSC-10
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Cori Brings HPC and Data Together

Phase I: 2388 x 32-core Intel Xeon “Haswell” 128 GB DDR4
Also known as “Data Partition”   (76,416 cores total)

Phase II: 9688 x 68-core Intel Xeon Phi “KNL” 96 GB DDR4 + 16 GB MCDRAM
                (658,784 total cores)

Gerty Cori: Biochemist and first American woman to win a Nobel Prize in science

Cori: #13 in Nov 2019 (#5 in Nov 2016) Top 500 list
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NERSC-9: Perlmutter
● Cray Shasta System providing 3-4x capability of Cori system

○ Phase 1 will arrive in late 2020
● First NERSC system designed to meet needs of both large scale 

simulation and data analysis from experimental facilities
○ Includes both NVIDIA GPU-accelerated and AMD CPU-only nodes 

● Named after Saul Perlmutter: Winner of 2011 Nobel Prize in Physics 
for discovery of the accelerating expansion of the universe.
○ Works at LBL, is a NERSC user
○ Leader of the Supernova Cosmology Project. Uses supercomputers to combine 

large-scale simulations with experimental data analysis 
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NERSC Systems Map 2020



  

Connecting to NERSC
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Multi-Factor Authentication (MFA)
● NERSC password + OTP ("One-Time Password")

○ OTP obtained via the “Google Authenticator” app on your 
smartphone

○ Alternative/backup option: Authy on desktop https://authy.com/
● MFA is used in login to NERSC systems, web sites, and 

services
○ Much harder for someone to hack your account

● Mandatory
○ except in special circumstances

● Setup MFA
○ https://docs.nersc.gov/connect/mfa/

https://docs.nersc.gov/connect/mfa/
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MFA Examples
<laptop>$ ssh -l elvis cori.nersc.gov
…
Login connection to host cori01 :
Password + OTP: 
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Connecting to NERSC: SSH
● All NERSC computational systems are accessible via ssh
● First: you need a terminal program on your desktop/laptop

○ Mac: "terminal" (built-in) or "iTerm2" (https://www.iterm2.com/) 
○ Windows: PuTTY 

(https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html)
○ Linux: Your own favorite :-)

● If you will use X-forwarding (think GUI) (Note: NX is better!) then you 
also need an X server
○ Mac: XQuartz (https://www.xquartz.org/)
○ Windows: Cygwin/X (http://x.cygwin.com/)
○ Linux: built in

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
https://www.xquartz.org/
http://x.cygwin.com/
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Example Session (Terminal only)
localhost:~elvis> ssh -l elvis cori.nersc.gov
 *****************************************************************
 *                      NOTICE TO USERS                          *
 *                      ---------------                                         *
 *  Lawrence Berkeley National Laboratory operates this             *
 *  computer system under contract to the U.S. Department of     *
 *  Energy.  This computer system is the property of the United  *
 *  States Government and is for authorized use only.  *Users    *
 *  (authorized or unauthorized) have no explicit or implicit    *
 *  expectation of privacy.*                                     *                                                     
 *……*                                                                   *
 *****************************************************************

Password:  <enter your SSH password + OTP (one-time-password)  here>

You will login to one of the login nodes (12 on Cori).

To allow X-forwarding to access visualization programs,  use the “-Y” flag:
localhost% ssh -l elvis -Y cori.nersc.gov
         e/elvis> module load matlab
         e/elvis> matlab 
               <MATLAB starts up>

 

Prompt on local system

Notification of acceptable use

Password prompt
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Connecting to NERSC: NX (1)
● NERSC recommends using NX instead of SSH X-forwarding since NX is 

faster and more reliable
● NX is a service for Accelerated X

Opens a new xterm
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Connecting to NERSC: NX (2)
● NX also has the benefit of long lasting terminal sessions that 

can survive between lost internet connections
○ Can reconnect later, even from a different location or computer

● Download and install the Client software: NoMachine
○ Instructions at https://docs.nersc.gov/connect/nx
○ Works on Window/Mac/Linux

● Or use NX Desktop from MyNERSC
○ Temporarily disabled currently 
○ Is slower compared to NX Client

https://docs.nersc.gov/connect/nx
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NoMachine Login with MFA

don't save the password (it changes every login!)

MFA OTP immediately after password (no spaces)
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NoMachine
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sshproxy
• sshproxy.sh creates a short-term (24 hours) certificate

o Run sshproxy.sh once, then you can ssh to NERSC 
systems for the next 24 hours before being asked for 
password+OTP again

• https://docs.nersc.gov/connect/mfa/#sshproxy

https://docs.nersc.gov/connect/mfa/#sshproxy
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Jupyter

You can access Cori from any web browser, via https://jupyter.nersc.gov 

https://jupyter.nersc.gov


  

File Systems and Data 
Management / Transfer
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Simplified NERSC File Systems

Memory

Burst Buffer

Scratch

Community

HPSS

Performance

Capacity

Global Common

Global Home

1.8 PB SSD Burst Buffer on Cori
Cray Datawarp 1.8 TB/s, 
temporary for job or campaign

28 PB (Cori) HDD Scratch
Lustre 700 GB/s, 
temporary (12 wk purge)

157 PB HDD Community
Spectrum Scale (GPFS)
150 GB/s, permanent

150 PB Tape Archive
HPSS Forever

20 TB SSD Software
Spectrum Scale
Permanent
Faster compiling / Source Code
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Global File Systems 
 Global Home
● Permanent, relatively small 

storage
● Mounted on all platforms
● NOT tuned to perform well for 

parallel jobs
● Quota cannot be changed
● Snapshot backups (7-day history)
● Perfect for storing data such as 

source code, shell scripts

 Community File System (CFS)
● Permanent, larger storage
● Mounted on all platforms
● Medium performance for parallel 

jobs
● Quota can be changed
● Snapshot backups (7-day history)
● Perfect for sharing data within 

research group
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Local File Systems 
 Scratch
● Large, temporary storage
● Optimized for read/write 

operations, NOT storage
● Not backed up
● Purge policy (12 weeks)
● Perfect for staging data and 

performing computations

 Burst Buffer
● Temporary storage

○ Can be per job or persistent for 
multiple users and jobs to access

● High-performance SSD file 
system

● Available on Cori only
● Perfect for getting good 

performance in I/O-constrained 
codes
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HPSS: Long Term Storage System

● High-Performance Storage System
● Archival storage of infrequently accessed data
● Use hsi and htar to put/get files between NERSC 

computational systems and HPSS
● More info at

○ https://docs.nersc.gov/filesystems/archive/ 

https://docs.nersc.gov/filesystems/archive/
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DTN: Dedicated Data Transfer System
● Data Transfer Nodes (DTN) are dedicated servers tuned for 

moving data at NERSC
○ Monitored bandwidth capacity between NERSC & other major facilities 

such as ORNL, ANL, BNL, SLAC…
○ Can be used to move data internally between NERSC systems and/or 

NERSC HPSS
● Use NERSC DTNs to move large volumes of data in and out 

of NERSC or between NERSC systems
● More info at

○ https://docs.nersc.gov/systems/dtn/

https://docs.nersc.gov/systems/dtn/


26

Globus Online
● The recommended tool for moving data in&out of NERSC

○ Reliable & easy-to-use web-based service: 
■ Automatic retries 
■ Email notification of success or failure

○ NERSC managed endpoints for optimized data transfers

● NERSC documentation
https://docs.nersc.gov/services/globus/

● Globus extensive documentation 
https://docs.globus.org

https://docs.nersc.gov/services/globus/
https://docs.globus.org/
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Data Transfer General Tips
● Use Globus Online for large, automated or monitored transfers
● scp is fine for smaller, one-time transfers (<100MB)

○ But note that Globus is also fine for small transfers
● Don’t use DTN nodes for non-data transfer purposes

○ Use system login nodes for more general routine tasks
● Don't use your $HOME directory 

○ Instead use /global/cfs, $SCRATCH … for better performance
● Plain “cp” is still used for transfers within file systems



  

Software Environment and  
Building Applications
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Software
● Cray supercomputers OS is a version of Linux
● Compilers are provided on machines
● Libraries: many libraries are provided by vendor, many 

others provided by NERSC
● Applications: NERSC compiles and supports many 

software packages (such as chemistry and materials 
sciences packages) for our users
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Modules Environment
● Modules are used to manage the user environment

○ https://docs.nersc.gov/environment/#nersc-modules-environment
module 

list To list the modules in your environment

avail 

avail -S

To list available modules
     To see all available modules: % module avail
     To see all available netcdf modules: % module avail –S netcdf

load/unload To load or unload module

show/display To see what a module loads

whatis Display  the  module file information

swap/switch To swap two modules
For example: to swap architecture target from Haswell to KNL
% module swap craype-haswell craype-mic-knl

help General help:  $module help
Information about a module: $ module help PrgEnv-cray

t

https://docs.nersc.gov/environment/#nersc-modules-environment
https://docs.nersc.gov/environment/#nersc-modules-environment
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Default Loaded Modules  

5) Compiler    8) Cray Scientific Libraries  
20) Programing Environment  21) Target architecture Driver  22) MPI Libraries

               

yunhe@cori03:~> module list
Currently Loaded Modulefiles:
  1) modules/3.2.11.4                                 13) 
gni-headers/5.0.12.0-7.0.1.1_6.27__g3b1768f.ari
  2) nsg/1.2.0                                        14) xpmem/2.2.20-7.0.1.1_4.8__g0475745.ari
  3) altd/2.0                                         15) job/2.2.4-7.0.1.1_3.34__g36b56f4.ari
  4) darshan/3.1.7                                    16) dvs/2.12_2.2.156-7.0.1.1_8.6__g5aab709e
  5) intel/19.0.3.199                                 17) alps/6.6.57-7.0.1.1_5.10__g1b735148.ari
  6) craype-network-aries                             18) rca/2.2.20-7.0.1.1_4.42__g8e3fb5b.ari
  7) craype/2.6.2                                     19) atp/2.1.3
  8) cray-libsci/19.06.1                              20) PrgEnv-intel/6.0.5
  9) udreg/2.3.2-7.0.1.1_3.29__g8175d3d.ari           21) craype-haswell
 10) ugni/6.0.14.0-7.0.1.1_7.32__ge78e5b0.ari         22) cray-mpich/7.7.10
 11) pmi/5.0.14                                       23) craype-hugepages2M
 12) dmapp/7.1.1-7.0.1.1_4.43__g38cf134.ari

Do not do “module purge” 
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Cross-Compile is Needed
● Cori: Haswell compute nodes and KNL compute nodes
● All Cori login nodes are Haswell nodes
● We need to cross-compile

○ Directly compile on KNL compute nodes is very slow 
○ Compiles on login nodes; Executables runs on compute nodes

● Binaries built for Haswell can run on KNL nodes, but not vice 
versa

● Recommends to build separate binaries for each architecture 
to take advantage of optimizations unique to processor type
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Software Environment
● Available compilers: Intel, GNU, Cray
● Use compiler wrappers to build.  It calls native compilers for each 

compiler such as ifort, mpiicc, etc. underneath. 
○ Do not use native compilers directly.
○ ftn for Fortran codes:  ftn my_code.F90
○ cc for C codes: cc my_code.c
○ CC for C++ codes: CC my_code.cc

● Compiler wrappers add header files and link in MPI and other 
loaded Cray libraries by default
○ Builds applications dynamically by default.  Can add “-static” to build 

dynamically if chosen
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How to Compile for KNL
● The default loaded architecture target module is 

“craype-haswell” on the Haswell login nodes.
○ This module sets CRAY_CPU_TARGET to haswell

● Best recommendation to build for KNL target
○ module swap craype-haswell craype-mic-knl
○ The above sets CRAY_CPU_TARGET to mic-knl
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Building Simple Test Program (1)
● To build on Cori Haswell:

○ Using default Intel compiler:
ftn -o mytest mytest_code.F90

○ Using Cray compiler:
module swap PrgEnv-intel PrgEnv-cray
ftn -o mytest mytest_code.F90
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Building Simple Test Program (2)
● To build on Cori KNL

○ Using default Intel compiler
module swap craype-haswell craype-mic-knl
ftn -o mytest mytest_code.F90

○ Using Cray compiler
module swap PrgEnv-intel PrgEnv-cray
module swap craype-haswell craype-mic-knl
ftn -o mytest mytest_code.F90
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Compiler Flags

Intel GNU Cray Description/ 
Comment

-O2 -O0 -O2 default

default, or -O3 -O2 or -O3,-Ofast default, or -O3 recommended

-qopenmp -fopenmp -fopenmp (C/C++) 
-h omp (Fortran)

OpenMP
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Compiler Recommendations
● Will not recommend any specific compiler

○ Intel - better chance of getting processor specific optimizations, 
especially for KNL

○ Cray compiler – many new features and optimizations, especially 
with Fortran 

○ GNU - widely used by open software
● Try different compilers for potential performance 

improvement
○ Start with the compilers that vendor/code developers used to 

minimize the chance of hitting compiler and code bugs
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Linking Considerations (1)

● Compiler wrapper will Link with Cray MPI (cray-mpich module is 
loaded by default), Cray Scientific libraries (cray-libsci module is 
loaded by default), and most Cray provided libraries and some 
NERSC provided libraries (need to load corresponding modules) 
automatically

CC parallel_hello.cpp

ftn dgemmx1.f90

module load cray-hdf5

cc h5write.c 
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Linking Considerations (2)
● To link with most NERSC provided libraries, extra include path and 

libraries need to be added manually, which are usually defined in 
module files for convenience, such as:

module load gsl

ftn test3.f90 $GSL

Use “module show gsl” to see how $GSL is defined 

● To link with Intel MKL (Math Kernel Libraries) with Intel compiler, 
use the “-mkl” flag

ftn test1.f90 -mkl          # default to parallel -multi-threaded lib

The loaded “cray-libsci” will be ignored if -mkl is used

 



  

Running Jobs
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Jobs at NERSC
● Most are parallel jobs (10s to 100,000+ cores)
● Also a number of “serial” jobs

○ Typically “pleasantly parallel” simulation or data analysis
● Production runs execute in batch mode
● Our batch scheduler is SLURM
● Debug jobs are supported for up to 30 min
● Batch interactive jobs are supported for up to 4 hrs
● Typical run times are a few to 10s of hours 

○ Limits are necessary because of MTBF and the need to 
accommodate 7,000 users’ jobs
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Login Nodes and Compute Nodes
● Login nodes (external)

○ Edit files, compile codes, submit batch jobs, etc.
○ Run short, serial utilities and applications
○ Cori has Haswell login nodes

● Compute nodes
○ Execute your application
○ Dedicated resources for your job
○ Cori has Haswell and KNL compute nodes
○ Binaries built for Haswell can run on KNL nodes, but not vice 

versa
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Cori Haswell Compute Nodes

● Each Cori Haswell node has 2 Intel Xeon 16-core Haswell processors
○ 2 NUMA domains (sockets) per node, 16 cores per NUMA domain. 2 hardware 

threads per physical core. 
○ NUMA Domain 0: physical cores 0-15 (and logical cores 32-47)                         

NUMA Domain 1: physical cores 16-31 (and logical cores 48-63)
● Memory bandwidth is non-homogeneous among NUMA domains

To obtain processor info:

Get on a compute node:
% salloc -N 1 -C …

Then:
% numactl -H
or % cat /proc/cpuinfo
or % hwloc-ls
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Cori KNL Example Compute Nodes
● A Cori KNL node has 68 cores/272 CPUs, 96 GB DDR memory, 16 GB high bandwidth on 

package memory (MCDRAM)
● Default mode is: quad, cache

● A quad,cache node (default setting) has only 1 NUMA node with all CPUs 
on the NUMA node 0 (DDR memory). MCDRAM is hidden from the 
“numactl -H” result since it is a cache.
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Submitting Batch Jobs
● To run a batch job on the compute nodes you must write a 

“batch script” that contains:
○ Directives to allow the system to schedule your job
○ An srun command that launches your parallel executable 

● A batch job will request resources about which qos, which type 
of compute nodes, how many nodes, and for how long, etc.

● Submit the job to the queuing system with the sbatch or salloc 
command

  sbatch my_batch_script      or
  salloc <command line options>
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Launching Parallel Jobs with Slurm

sr
un

sbatch
or

salloc

Login Node

Head Compute 
Node 

Other Compute Nodes 
allocated to the job

Head compute node:
● Runs commands in batch script
● Issues job launcher “srun” to start parallel 

jobs on all compute nodes (including itself)

Login node:
● Submit batch jobs via sbatch or salloc
● Please do not issue “srun” from login nodes
● Do not run big executables on login nodes
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My First “Hello World” Program
my_batch_script:

#!/bin/bash
#SBATCH -q debug
#SBATCH -N 2
#SBATCH -t 10:00
#SBATCH -C haswell
#SBATCH -L SCRATCH
#SBATCH -J myjob
srun -n 64 ./helloWorld

To run via batch queue
% sbatch my_batch_script
To run via interactive batch
% salloc -N 2 -q interactive -C haswell -t 10:00 
<wait_for_session_prompt. Land on a compute node>
% srun -n 64 ./helloWorld
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Sample Cori Haswell Batch Script

● Need to specify which shell to use for batch script
● Environment is automatically imported 

●

#!/bin/bash
#SBATCH --qos=regular
#SBATCH --nodes=4
#SBATCH --time=1:00:00
#SBATCH --constraint=haswell
#SBATCH --license=SCRATCH
#SBATCH --jobname=myjob

srun -n 1280 -c 2 --cpu-bind=cores ./mycode.exe
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Sample Cori Haswell Batch Script
#!/bin/bash
#SBATCH --qos=regular
#SBATCH --nodes=4
#SBATCH --time=1:00:00
#SBATCH --constraint=haswell
#SBATCH --license=SCRATCH
#SBATCH --jobname=myjob

srun -n 1280 -c 2 --cpu-bind=cores ./mycode.exe

Job directives: instructions for the batch system 

● Can use long name or short name (see next slide) to request resources
● Submission QOS (default is “debug”)
● How many compute nodes to reserve for your job
● How long to reserve those nodes
● What type of compute nodes to use
● More optional SBATCH keywords
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Sample Cori Haswell Batch Script - MPI

SBATCH optional keywords: 
● What file systems my job depends on (prevent to start when there are file 

system issues)
● What to name my job
● What to name STDOUT files
● What account to charge
● Whether to notify you by email when your job finishes
● …

#!/bin/bash
#SBATCH -q regular
#SBATCH -N 4
#SBATCH -t 1:00:00
#SBATCH -C haswell
#SBATCH -L SCRATCH
#SBATCH -J myjob

srun -n 1280 -c 2 --cpu-bind=cores ./mycode.exe
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Sample Cori Haswell Batch Script - MPI
#!/bin/bash
#SBATCH -q regular
#SBATCH -N 40
#SBATCH -t 1:00:00
#SBATCH -C haswell
#SBATCH -L SCRATCH
#SBATCH -J myjob

srun -n 1280 -c 2 --cpu_bind=cores ./mycode.exe

● There are 64 logical CPUs (the number Slurm sees) on each node
● “-c” specifies #_logical_CPUs to be allocated to each MPI task
● --cpu-bind is critical especially when nodes are not fully occupied

32 MPI tasks per node
in this example
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    Sample Cori Haswell Batch Script - Hybrid 
MPI/OpenMP

#!/bin/bash
#SBATCH -q regular
#SBATCH -N 40
#SBATCH -t 1:00:00
#SBATCH -C haswell

export OMP_NUM_THREADS=8
export OMP_PROC_BIND=true
export OMP_PLACES=threads

srun -n 160 -c 16 --cpu-bind=cores ./mycode.exe

● Set OMP_NUM_THREADS
● Use OpenMP standard settings for process and thread affinity
● Again, “-c” specifies #_logical_CPUs to be allocated to each MPI task

○ with 4 MPI tasks per node on Haswell, set 64 logical CPUs /4 =16 for ”-c”
○ “-c” value should be >= OMP_NUM_THREADS

4 MPI tasks per node    
     in this example
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Use “shared” QOS to Run Serial Jobs
● The “shared” QOS allows multiple executables from different users to share a 

node
● Each serial job run on a single physical core of a “shared” node
● Up to 32 (Cori Haswell) jobs from different users depending on their memory 

requirements
#SBATCH -q shared
#SBATCH -t 1:00:00
#SBATCH --mem=4GB
#SBATCH -C haswell
#SBATCH -J my_job
./mycode.x

● Only available on Cori Haswell
● Small parallel job that use less than a full node can also run in the “shared” partition
● https://docs.nersc.gov/jobs/best-practices/#serial-jobs

● Do not specify #SBATCH -N”
● Default “#SBATCH -n” is 1
● Default memory is 1,952 MB for 

Haswell 
● Use -n or --mem to request more 

slots for larger memory
● Do not use “srun” for serial 

executable (reduces overhead)

https://docs.nersc.gov/jobs/best-practices/#serial-jobs
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How to Run Debug and Interactive Jobs
● You can run small parallel jobs interactively on dedicated 

nodes.
● Debug

○ Max 512 nodes, up to 30 min, run limit 2, submit limit 5
% salloc -N 20 -q debug -C haswell -t 30:00

● Interactive   (highly recommend to use this!!)
○ Instant allocation (get nodes in 5 min or reject), run limit 2, submit limit 2 
○ Max walltime 4 hrs, up to 64 nodes on Cori (Haswell and KNL combined) 

per project 
% salloc -N 2 -q interactive -C knl -t 2:00:00

○ More information (such as how to find out who in your project is using)
■ https://docs.nersc.gov/jobs/examples/#interactive
■ https://docs.nersc.gov/jobs/interactive/

https://docs.nersc.gov/jobs/examples/#interactive
https://www.nersc.gov/users/live-status/
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Advanced Running Jobs Options
● Bundle jobs (multiple “srun”s in one script, sequentially or 

simultaneously)
● Use Job Arrays to manage collections of similar jobs 
● Use job dependency features to chain jobs 
● Run variable-time jobs and “flex” qos to run longer jobs 
● Use workflow tools to manage jobs
● Use Burst Buffer for faster IO
● Use Shifter for jobs with custom user environment
● Use “xfer” for transferring to/from HPSS
● Use “bigmem” for large memory jobs
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Bundle Jobs
Multiple Jobs Sequentially:
#!/bin/bash 
#SBATCH -q regular 
#SBATCH -N 100  
#SBATCH -t 12:00:00 
#SBATCH -J my_job 
#SBATCH -o my_job.o%j 
#SBATCH -L project,SCRATCH
#SBATCH -C haswell
 
srun -n 3200 ./a.out 
srun -n 3200 ./b.out 
srun -n 3200 ./c.out 

Multiple Jobs Simultaneously:
#!/bin/bash
#SBATCH -q regular 
#SBATCH -N 9       
#SBATCH -t 12:00:00 
#SBATCH -J my_job 
#SBATCH -o my_job.o%j 
#SBATCH -L project
#SBATCH -C haswell

srun -n 44 -N 2 -c2 --cpu-bind=cores ./a.out & 
srun -n 108 -N 5 -c2 --cpu-bind=cores ./b.out & 
srun -n 40 -N 2 -c2 --cpu-bind=cores ./c.out & 
wait

● Need to request total number of nodes needed
● No applications are shared on the same nodes
● Make sure to use “&” (otherwise run in sequential) and 

“wait” (otherwise job exit immediately)
● https://docs.nersc.gov/jobs/examples/#multiple-parallel-jo

bs-simultaneously

● Need to request largest number of 
nodes needed

● https://docs.nersc.gov/jobs/examples/#
multiple-parallel-jobs-sequentially

https://docs.nersc.gov/jobs/examples/#multiple-parallel-jobs-simultaneously
https://docs.nersc.gov/jobs/examples/#multiple-parallel-jobs-simultaneously
https://docs.nersc.gov/jobs/examples/#multiple-parallel-jobs-sequentially
https://docs.nersc.gov/jobs/examples/#multiple-parallel-jobs-sequentially
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Job Arrays
#!/bin/bash 
#SBATCH -q regular 
#SBATCH -N 1
#SBATCH -t 1:00:00 
#SBATCH --array=1-10 
#SBATCH -L SCRATCH 
#SBATCH -C haswell

cd test_$SLURM_ARRAY_JOB_ID  
srun ./mycode.exe

● Better managing jobs, not necessary 
faster turnaround

● Each array task is considered a single 
job for scheduling

● Use $SLURM_ARRAY_JOB_ID for 
each individual array task

https://docs.nersc.gov/jobs/examples/#job-arrays

https://docs.nersc.gov/jobs/examples/#job-arrays
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Dependency Jobs
cori% sbatch job1 
Submitted batch job 1655447 

cori06% sbatch --dependency=afterok:5547 job2 
or 
cori06% sbatch --dependency=afterany:5547 job2

cori06% sbatch job1 
submitted batch job 1655447

cori06% cat job2 
#!/bin/bash 
#SBATCH -q regular 
#SBATCH -N 1 
#SBATCH -t 1:30:00 
#SBATCH -d afterok:1655447 
#SBATCH -C haswell 
srun -n 16 -c 4 ./a.out 

cori06% sbatch job2

https://docs.nersc.gov/jobs/example
s/#dependencies

https://docs.nersc.gov/jobs/examples/#dependencies
https://docs.nersc.gov/jobs/examples/#dependencies
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Use Workflow Management Tools
● These tools can help data-centric science to automate moving 

data, multi-step processing, and visualization at scales. 
● Please do not do below!  

for i = 1, 10000

     srun -n 1 ./a.out

It is inefficient and overwhelms Slurm scheduler
● Available workflow tools include: GNU parallel, Taskfarmer, 

Fireworks, Nextflow, Papermill, etc. 
● One usage case is to pack large number of serial jobs into 

one script
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 xfer Jobs
#!/bin/bash 
#SBATCH -M escori
#SBATCH -q xfer 
#SBATCH -t 12:00:00 
#SBATCH -J my_transfer
 
#Archive run01 to HPSS 
htar -cvf run01.tar run01

● Configured for the purpose of staging data from HPSS before run or archive 
result to HPSS after run 

● Avoid wasting NERSC hours if done within large runs
● Runs on external login nodes, via Slurm Server ”escori”.
● Can submit jobs to the xfer QOS from inside another batch script:

○ Add to the end of batch script: “sbatch -M escori -q xfer myarchive.sl”
● https://docs.nersc.gov/jobs/examples/#xfer-queue

https://docs.nersc.gov/jobs/examples/#xfer-queue
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bigmem Jobs
#!/bin/bash
#SBATCH -M escori 
#SBATCH -q bigmem 
#SBATCH -N 1 
#SBATCH -t 01:00:00 
#SBATCH -J my_big_job 
#SBATCH -L SCRATCH 
#SBATCH --mem=250GB 
srun -N 1 -n 1 ./my_big_exe

● Runs on external login nodes, via Slurm Server “escori”
● Node is shared among multiple users by default
● Can request exclusive node if needed to run with multiple threads

○ add #SBATCH --exclusive,   and use srun -N 1 -c 32 ./my_big_exe 
● https://docs.nersc.gov/jobs/examples/#large-memory

https://docs.nersc.gov/jobs/examples/#large-memory
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Process / Thread / Memory Affinity
● Correct process, thread and memory affinity is the basis for 

getting optimal performance on Cori Haswell and KNL. It is also 
essential for guiding further performance optimizations. 
○ Process Affinity: bind MPI tasks to CPUs
○ Thread Affinity: bind threads to CPUs allocated to its MPI process
○ Memory Affinity: allocate memory from specific NUMA domains

● Our goal is to promote OpenMP standard settings for portability. 
○ OMP_PROC_BIND and OMP_PLACES are preferred to Intel 

specific KMP_AFFINITY and KMP_PLACE_THREADS settings. 
● https://docs.nersc.gov/jobs/affinity/

https://docs.nersc.gov/jobs/affinity/
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Can We Just Do a Naive srun?
Example: 16 MPI tasks x 8 OpenMP threads per task on a single 68-core KNL quad,cache 
node:

% export OMP_NUM_THREADS=8
% export OMP_PROC_BIND=spread    (other choice are “close”,”master”,”true”,”false”)
% export OMP_PLACES=threads          (other choices are: cores, sockets, and various ways to specify 
explicit lists, etc.)

% srun -n 16  ./xthi |sort -k4n,6n
         Hello from rank 0, thread 0, on nid02304. (core affinity = 0)
         Hello from rank 0, thread 1, on nid02304. (core affinity = 144)        (on physical core 8)
         Hello from rank 0, thread 2, on nid02304. (core affinity = 17)
         Hello from rank 0, thread 3, on nid02304. (core affinity = 161)        (on physical core 25)
         Hello from rank 0, thread 4, on nid02304. (core affinity = 34)
         Hello from rank 0, thread 5, on nid02304. (core affinity = 178)        (on physical core 42)
         Hello from rank 0, thread 6, on nid02304. (core affinity = 51)
         Hello from rank 0, thread 7, on nid02304. (core affinity = 195)        (on physical core 59)
         Hello from rank 1, thread 0, on nid02304. (core affinity = 0)
         Hello from rank 1, thread 1, on nid02304. (core affinity = 144)

    It is a mess!    thread 0 for rank 0, and thread 1 for rank 1 are on same physical core 0
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 Importance of -c and --cpu-bind Options
● The reason: 68 cores on KNL is not divisible by #MPI tasks!    

○ Each MPI task is getting 68x4/#MPI tasks of logical cores as the domain 
size

○ MPI tasks are crossing tile boundaries
● Set number of logical cores per MPI task (-c) manually by wasting extra 

4 cores on KNL on purpose: 256/#MPI_tasks_per_node.
○ Meaning to use 64 cores only on the 68-core KNL node, and spread the 

logical cores allocated to each MPI task evenly among these 64 cores.
○ Now it looks good!
○ % srun -n 16 -c 16 --cpu-bind=cores ./xthi

              Hello from rank 0, thread 0, on nid09244. (core affinity = 0)
              Hello from rank 0, thread 1, on nid09244. (core affinity = 136)       (on physical core 0)
              Hello from rank 0, thread 2, on nid09244. (core affinity = 1)
              Hello from rank 0, thread 3, on nid09244. (core affinity = 137)       (on physical core 1)
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Now It Looks Good!
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Sample Job Script to Run on KNL Nodes

Illustration Courtesy of Zhengji Zhao, NERSC
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NERSC Job Script Generator
https://my.nersc.gov/script_generator.php
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Monitoring Your Jobs
● Once your job is submitted, it enters the queue and will start when 

resources are available
● Overall job priorities are a combination of QOS, queue wait time, job size, 

wall time request (and fair share). 
● You can monitor with

○ squeue 
○ sqs
○ sacct

● On the web
○ https://my.nersc.gov

■ Cori Queues, Queue backlogs, Queue Wait Times (statistics data)
○ https://www.nersc.gov/users/live-status/ 🡺 Queue Look
○ https://iris.nersc.gov  the “Jobs” tab

https://my.nersc.gov/
https://www.nersc.gov/users/live-status/
https://iris.nersc.gov
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squeue: Slurm Batch Queue Display 

● By default, “squeue” displays all users jobs.  
● Use “squeue -u" to display your own jobs.
● See “squeue --help” or “man squeue” for more details.

yunhe@cori05:~> yunhe@cori09:~> squeue -a |more
             JOBID PARTITION     NAME     USER ST       TIME  NODES NODELIST(REASON)
          31593007 regular_k allHSQf2    detar CG    5:46:29     13 nid[02568-02569,03678,03816,03888-03889,0726
5,07806,07811,09911-09912,10697,10806]
          31611508    shared run_each  cemitch CG       3:12      1 nid00553
          31611509    shared run_each  cemitch CG       3:12      1 nid00552
          31146718 regular_k hello_up bonachea PD       0:00      1 (ReqNodeNotAvail, UnavailableNodes:nid[02655
,02994,03002,03446,03465,03818,03912,04028-04029,04202,04219,04408,04466,04950,05087,05152,05163,05444,05689,060
96-06099,06580,06662,06902,06948,07462,07813,08029,08215,08251,08562,08603,08815,09133,09408-09419,09424-09487,0
9492-09547,09552-09599,09762,11062,11247,11557,11835,11905])
          31612924  genepool align-70  qc_user PD       0:00      1 (Resources)
          31612927  genepool filter-7  qc_user PD       0:00      1 (Priority)
          31612929  genepool align-70  qc_user PD       0:00      1 (Priority)
          31611879 debug_knl benchmar   junmin PD       0:00      8 (Dependency)
          31611883 debug_knl benchmar   junmin PD       0:00    128 (Dependency)
          31611888 debug_knl benchmar   junmin PD       0:00     16 (Dependency)
          31611897 debug_hsw     test startsev PD       0:00     32 (Dependency)
          31611902 debug_knl benchmar   junmin PD       0:00     32 (Dependency)
    31612757_[3-5] debug_hsw runme.sh  kkrizka PD       0:00      1 (QOSMaxJobsPerUserLimit)
...
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sqs: NERSC Custom Batch Queue Display 

yunhe@cori05:~> sqs2 
JOBID          ST USER     NAME         NODES TIME_LIMIT       TIME  SUBMIT_TIME          QOS             START_TIME           FEATURES       
NODELIST(REASON)
31567887       PD fxxx     wrxx         512        15:00       0:00  2020-06-09T23:11:27  debug_knl       2020-06-10T00:56:00  knl&quad&cache (Resources)

31438456       PD fxxx     mpixxx       150        30:00       0:00  2020-06-07T12:42:04  regular_1       N/A                  haswell        (Resources)        
31543103       PD fxxx     mpixxx       3          30:00       0:00  2020-06-09T00:22:12  regular_1       N/A                  haswell        (Priority)    
31402334       R  fxxx     Nxxxxx       1       12:00:00    4:27:45  2020-06-05T23:59:19  regular_1       2020-06-09T19:28:54  knl&quad&cache nid10273    
<omitted….>

● By default, “sqs” displays your own jobs.  Use “sqs -a" to display all users jobs.
● See “sqs --help” for more details.
● sqs2 is a simplified NERSC wrapper for the Slurm "squeue" command with a 

chosen default format.  It takes all allowed flags in “squeue”. 
● “sqs2” will be renamed to “sqs” in July.

yunhe@cori05:~> sqs
JOBID       ST  USER   NAME       NODES  REQUESTED   USED  SUBMIT               QOS        SCHEDULED_START      FEATURES        REASON      
110901xx    PD  fxxxx  mxxx       1536     5:00      0:00  2018-03-20T10:49:23  regular_0  2018-03-22T06:30:00  haswell         Resources  
110901xx    PD  fxxxx  run.xxx*   1537    20:00      0:00  2018-03-20T10:51:03  regular_0  2018-03-22T06:30:00  haswell         Resources  
110823xx    PD  fxxxx  gxxx        300    30:00      0:00  2018-03-19T23:05:24  regular_1  avail_in_~1.6_days   haswell         Priority   
110823xx    PD  fxxxx  run-xx      768    20:00      0:00  2018-03-19T23:05:33  regular_1  avail_in_~1.6_days   haswell         Priority   
110823xx    PD  fxxxx  rxxxx      1536    20:00      0:00  2018-03-19T23:05:04  regular_0  N/A                  haswell         JobHeldUser
110823xx    PD  fxxxx  axxxxxxxx* 1536    30:00      0:00  2018-03-19T23:05:16  regular_0  N/A                  haswell         JobHeldUser
111152xx    PD  fxxxx  run.xxx     769  2:00:00      0:00  2018-03-21T09:39:29  regular_1  avail_in_~3.0_days   knl&quad&cache  None
<omitted…>
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sacct: Query Completed and Pending Jobs

● Maximum query duration is one month (subject to change)
● Detailed job steps info will be displayed without “-X”  flag
● Many more job fields can be queried. See “sacct --help” or “man 

sacct” for more details.
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Cori Haswell Queue Policy (as of June 2020)
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Cori KNL Queue Policy (as of June 2020)
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How Your Jobs are Charged (1)
● Unit: NERSC Hours
● Each architecture has a base charge per node hour used: 

○ Cori Haswell: 140
○ Cori KNL: 80

● Modification to base charge by QOS used:
○ premium: 2.0
○ regular: 1.0 (default)
○ low: 0.5
○ flex: 0.25
○ overrun:  0
○ shared: fraction of the node used

● On Cori KNL
○ Jobs requesting 1024 or more nodes get a 20% discount
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How your Jobs are Charged (2)
● Your project is charged for each node your job was allocated for 

the entire duration of your job.
○ The minimum allocatable unit is a node (except for the “shared” 

QOS). 
○ Example:  4 Cori Haswell nodes, run for 1 hour with “premium” 

QOS
NERSC hours = 4 * 1 hour * 140 * 2 = 1120 

○ “shared” jobs are charged with # of physical cores used instead of 
the entire node.

● If you have access to multiple projects, pick which one to charge 
in your batch script
 #SBATCH –A project_name
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How are Jobs Scheduled 
● Each job has its priority value, composed of qos, job age, and a small 

value of fairshare. 
● There are two Slurm schedulers: main and backfill.
● Every few minutes, the main scheduler schedules jobs in the order of 

the priority list a few days into the future. 
○ Jobs are only eligible to be scheduled if they've reached a priority 

threshold. 
○ Currently only 2 jobs per qos per user are considered for scheduling. 

● The backfill scheduler then schedules small and short jobs to run if 
they will not affect the start time of those jobs that are already 
scheduled by the main scheduler.
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Tips for Getting Better Throughput
● Line jumping is allowed, but it may cost more (with “premium” QOS)
● Submit shorter jobs, they are easier to schedule

○ Checkpoint to break up long jobs, use variable time
○ Short jobs can take advantage of ‘backfill’ opportunities
○ Run short jobs just before maintenance
○ Run variable-time jobs; use “flex” QOS

● Make sure the wall clock time you request is accurate
○ Larger shorter jobs are easier to schedule than long smaller jobs
○ Many users unnecessarily request the largest wall clock time possible 

as default
● Check queue backlogs and queue wait times

○ https://my.nersc.gov/backlog.php
○ https://my.nersc.gov/queuewaittimes.php

https://my.nersc.gov/backlog.php
https://my.nersc.gov/queuewaittimes.php
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Large Jobs Considerations
● sbcast your executables to compute nodes before srun:

sbcast --compress=lz4 /path/to/exe /tmp/exe

srun /tmp/exe

https://docs.nersc.gov/jobs/best-practices/#large-jobs
● Consider to build statically to run large jobs.  

○ There may be considerable startup delays for running large jobs of 
dynamic executables. 

● Consider to use shifter for large jobs using shared libraries.  
● Consider to use burst buffer for jobs doing large IO. 

https://docs.nersc.gov/jobs/best-practices/#large-jobs
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Other Running Jobs Considerations
● Remember to compile separately for each type of compute nodes 
● Running jobs from global homes is strongly discouraged

○ IO is not optimized
○ The global homes file system access on compute nodes is much slower than 

from $SCRATCH
○ It may also cause negative impact for other users interactive response on the 

system

● Consider to put your project’s shared software in 
/global/common/software/<project>
○ It is mounted read-only on compute nodes, so has less impact than other 

GPFS file systems (global homes or community file system)

● Consider to adopt workflow tools for better managing your jobs



  

Data Analytics Software and Services
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Cori’s Data Friendly Features 
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Production Data Software Stack
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Data Analytic Software Services
● Science Gateways
● Databases
● Shifter  
● Burst Buffer 
● Python
● Jupyter
● Machine Learning / Deep Learning
● Workflows 
● And more …
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Access for External Collaborators  
● Science Gateways (web portals)

○ NERSC supports project-level public http access
■ Project specific area can be created:

/global/cfs/cdirs/<your_project>/www
■ These are available for public access under the URL:

http://portal.nersc.gov/cfs/<your_project> 

○ Each repo has a /project space, can publish as above
○ Special Science Gateways can be created.  Sophisticated ones can 

be made with SPIN: https://docs.nersc.gov/services/spin/getting_started/ 
○ Details at: https://docs.nersc.gov/services/science-gateways/

● FTP Upload Service (external user to share data with NERSC user) 
https://www.nersc.gov/users/job-logs-statistics/storage-and-file-systems/nersc-ftp-
upload-service/

https://docs.nersc.gov/services/spin/getting_started/
https://docs.nersc.gov/services/science-gateways/
https://www.nersc.gov/users/job-logs-statistics/storage-and-file-systems/nersc-ftp-upload-service/
https://www.nersc.gov/users/job-logs-statistics/storage-and-file-systems/nersc-ftp-upload-service/
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● Relational / SQL Databases
○ MySQL and PostgreSQL, good for:

 structured data (have a ‘Schema’)
 Relational (tables of rows and columns)
 Mid-Size, <= several GB in total

● NoSQL / Schema-less Databases
○ MongoDB, good for:

 Un-Structured Data (‘Schema-less’)
 Mid-Size to Large, e.g. 10 GB of Text

● More info and how to request a database: 
https://docs.nersc.gov/services/databases/

Databases

https://docs.nersc.gov/services/databases/
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Shifter 

● NERSC R&D effort, in collaboration with Cray, to support 
Docker Application images

● “Docker-like” functionality on the Cray and HPC Linux clusters. 
Enables users to run custom environments on HPC systems.

● Addresses security issues in a robust way
● Efficient job-start & Native application performance

https://docs.nersc.gov/development/shifter/how-to-use/

https://docs.nersc.gov/development/shifter/how-to-use/
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Shifter Accelerates Python Applications
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Create an Image with Docker
FROM ubuntu:14.04
MAINTAINER Shane Canon scanon@lbl.gov
# Update packages and install dependencies
RUN apt-update –y && \
   apt-get install -y build-essential

# Copy in the application
ADD . /myapp
# Build it
RUN cd /myapp && \
    make && make install

Dockerfile

laptop> docker build -t scanon/myapp:1.1 .
laptop> docker push scanon/myapp:1.1
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Use the Image with Shifter
#!/bin/bash

#SBATCH -N 16 -t 20 

#SBATCH --image=scanon/myapp:1.1

module load shifter

export TMPDIR=/mnt

srun -n 16 shifter /myapp/app

cori> shifterimg pull scanon/myapp:1.1
cori> sbatch ./job.sl

Submit script
job.sl
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Shifter and MPI  
# This example makes use of an Ubuntu-based NERSC base image 
# that already has MPI built and installed.
# Shifter automatically maps in appropriate libraries at run time.

FROM nersc/ubuntu-mpi:14.04
ADD helloworld.c /app/
RUN cd /app && mpicc helloworld.c -o /app/hello
ENV PATH=/usr/bin:/bin:/app:/usr/local/bin

cori> shifterimg pull scanon/myapp:1.1
cori> salloc -n 128 --image=scanon/myapp:1.1 -C haswell
% srun -n 128 shifter /myapp/app
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Use Burst Buffer for Faster IO

● Cori has 1.8PB of SSD-based “Burst Buffer” to support I/O 
intensive workloads

● Jobs can request a job-temporary BB filesystem, or a 
persistent (up to a few weeks) reservation

● More info
○ https://docs.nersc.gov/jobs/examples/#burst-buffer

https://docs.nersc.gov/jobs/examples/#burst-buffer
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Burst Buffer Architecture 

➢ DataWarp software (integrated with SLURM WLM) allocates portions of available storage to users 
per-job (or ‘persistent’).

➢ Users see a POSIX filesystem
➢ Filesystem can be striped across multiple BB nodes (depending on allocation size requested)

Compute Nodes
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- 94 -

● ‘type=scratch’ – duration just for compute job (i.e. not ‘persistent’)
● ‘access_mode=striped’ – visible to all compute nodes and striped across 

multiple BB nodes 
● Data ‘stage_in’ before job start and ‘stage_out’ after

#!/bin/bash
#SBATCH –q regular -N 10 -C haswell –t 00:10:00
#DW jobdw capacity=1000GB access_mode=striped type=scratch
#DW stage_in source=$SCRATCH/inputs destination=$DW_JOB_STRIPED/inputs \ type=directory
#DW stage_in source=$SCRATCH/file.dat destination=$DW_JOB_STRIPED/ type=file
#DW stage_out source=$DW_JOB_STRIPED/outputs destination=/lustre/outputs \  type=directory
srun my.x --indir=$DW_JOB_STRIPED/inputs --infile=$DW_JOB_STRIPED/file.dat \  
--outdir=$DW_JOB_STRIPED/outputs

Burst Buffer Example
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Python
● Extremely popular interpreted language, continuing to grow 
● Libraries like NumPy, SciPy, scikit-learn commonly used for 

scientific analysis
● Are used for ML/DL
● NERSC Python is Anaconda 
● https://docs.nersc.gov/programming/high-level-environments/python/
● Do not use /usr/bin/python, instead:

       module load python
       which already includes basic packages: numpy, scipy, mpi4py

https://docs.nersc.gov/programming/high-level-environments/python/
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Your Own Python Conda Environment
● To make a custom env

module load python
conda create -n myenv python=3.7
source activate myenv
conda (or pip) install your_custom_package
###import antigravity
source deactivate myenv

● To use the custom env later
source activate mynev   (# does not change your dot file 
setup) 
or 
conda activate myenv    (# changes your dot file setup)
<...steps to use this conda env ... >
conda deactivate myenv
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Parallel with Python
● Within a node

○ Use OpenMP-threaded math libs
○ Multiprocessing is OK too

● Multi-node parallelism
○ Best supported by mpi4py
○ Dask and PySpark frameworks also work 

● Hybrid parallelism
○ Best route is mpi4py + threaded math libs

● Best to use shifter to scale up Python with mpi4py
○ https://docs.nersc.gov/programming/high-level-environments/python/scaling-up

/#shifter-the-best-way-to-run-python-at-scale

https://docs.nersc.gov/programming/high-level-environments/python/scaling-up/#shifter-the-best-way-to-run-python-at-scale
https://docs.nersc.gov/programming/high-level-environments/python/scaling-up/#shifter-the-best-way-to-run-python-at-scale
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What is Jupyter?
Interactive open-source web application

Allows you to create and share documents, “notebooks,” containing:
Live code
Equations
Visualizations
Narrative text
Interactive widgets

Things you can use Jupyter notebooks for:
Data cleaning and data transformation
Numerical simulation
Statistical modeling
Data visualization
Machine learning
Workflows and analytics frameworks
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Which Notebook Server to Choose?

Spin Shared CPU Node:
External to Cori, in Spin
Can’t see $SCRATCH
Can’t run jobs
But can see /cfs, $HOME

Cori Shared CPU Node:
Notebook on cori{13,14,19}
Can see /cfs, $HOME, etc
Can see Cori $SCRATCH
Same Python env as ssh login
Can submit jobs via %sbatch

Cori Shared GPU Node:
Notebook on cgpu{01-18}
Like Cori Shared CPU
Runs in a 4h job
Enabled if you have GPU QOS
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JupyterLab Interface
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Your Own Custom Jupyter Kernel
Most common Jupyter question:

“How do I take a conda environment and use it from Jupyter?”

Several ways to accomplish this, here’s the easy one.

  $ module load python
  $ conda create -n myenv python=3.7
  $ source activate myenv
  (myenv) $ conda install ipykernel <other-packages>...
  (myenv) $ python -m ipykernel install --user --name myenv-jupyter

Point your browser to jupyter.nersc.gov.
(You may need to restart your notebook server via control panel).
Kernel “myenv-jupyter” should be present in the kernel list.
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NERSC Deep Learning Software Stack Overview 
General strategy:

● Provide functional, performant installations of the 
most popular frameworks and libraries

● Enable flexibility for users to customize and deploy 
their own solutions

Frameworks:

Distributed training libraries:
● Horovod
● PyTorch distributed
● Cray Plugin

Productive tools and services:
● Jupyter, Shifter
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How to Use NERSC DL Software Stack
We have modules you can load which contain python and DL libraries:

module load tensorflow/intel-2.1.0-py37

module load pytorch/v1.5.0

Check which software versions are available with:
module avail tensorflow

You can install your own packages on top to customize:
pip install --user MY-PACKAGE 

Or you can create your conda environments from scratch:
conda create -n my-env MY-PACKAGES

More on how to customize your setup can be found in the docs (TensorFlow, PyTorch).
We also have pre-installed Jupyter kernels.

https://docs.nersc.gov/analytics/machinelearning/tensorflow/#customizing-environments
https://docs.nersc.gov/analytics/machinelearning/pytorch/#customizing-environments
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Jupyter for Deep Learning 
JupyterHub service provides a rich,
interactive notebook ecosystem on Cori
● Very popular service with hundreds of users
● A favorite way for users to develop ML code

Users can run their deep learning workloads
● on Cori CPU and Cori GPU
● using our pre-installed DL software kernels
● using their own custom kernels
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https://docs.nersc.gov/services/jupyter/#conda-environments-as-kernels


  

NERSC Online Resources
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Online Resources: Classic NERSC Page

● https://www.nersc.gov
● Science, News, Publications
● Contact Us
● Live Status (MOTD): 

https://www.nersc.gov/live-status/
motd/

● Training Events: 
https://www.nersc.gov/users/train
ing/events/

https://www.nersc.gov
https://www.nersc.gov/live-status/motd/
https://www.nersc.gov/live-status/motd/
http://www.nersc.gov/users/training/events/
http://www.nersc.gov/users/training/events/
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Online Resources: NERSC Docs
Technical Documentations

       https://docs.nersc.gov
 
● Accounts
● IRIS
● Connecting
● Programming
● Running Jobs 
● Applications 
● Storage Systems
● Analytics
● Performance 
● ...

https://docs.nersc.gov
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Online Resources: MyNERSC
 https://my.nersc.gov
● Dashboard
● Jobs
● Center Status
● File Brwoser
● Service Tickets
● NX Desktop 

(disabled)
● Jupyter Hub
● Links to other useful 

pages

https://help.nersc.gov/
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Online Resources: IRIS 

● IRIS: NERSC Account Management and Reporting: 
https://iris.nersc.gov

○ Change password
○ Change contact info
○ SSH Keys, MFA
○ Check usage info

https://iris.nersc.gov
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Online Resources: Help Portal

 https://help.nersc.gov
● Submit tickets (ask questions)
● Request forms:

○ Quota Increase
○ Reservations

● Allocation (ERCAP) Requests

https://help.nersc.gov/
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https://my.nersc.gov Leads You to All Sites

iris.nersc.gov

docs.nersc.gov

www.nersc.gov

jupyter.nersc.gov

help.nersc.gov
my disk quota

is cori up?

my jobs

https://my.nersc.gov
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Online Resources: Cori GPU Documentation
 https://docs-dev.nersc.gov
● GPU nodes

○ Hardware info
○ Slurm access
○ Usage
○ Software

■ Compilers 
■ Math libraries
■ Python
■ Shifter
■ Profiling

○ Examples

https://docs-dev.nersc.gov
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upcoming NERSC New user training (June 16, 2020)
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● https://www.nersc.gov/users/training/events/new-user-trai
ning-june-16-2020/
○ You are encouraged to attend the all day training next Tuesday, or 

join the particular sessions of interest for in-depth understanding.

https://www.nersc.gov/users/training/events/new-user-training-june-16-2020/
https://www.nersc.gov/users/training/events/new-user-training-june-16-2020/
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Hands-on Exercises  

● % cd $SCRATCH
● % cp -r /global/cfs/cdirs/training/2020/CSSS .
● % cd CSSS
● Beginner users follow: run-hello.README
● Advanced users follow: run-xthi.README
● References

○ Running Jobs: https://docs.nersc.gov/jobs/
○ Interactive Jobs: https://docs.nersc.gov/jobs/examples/#interactive

https://docs.nersc.gov/jobs/
https://docs.nersc.gov/jobs/
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Thank You 


